
Analysis of melting by natural convection 
in an enclosure 
Adrian Bejan 
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA 

This paper reports theoretical solutions for the quasi-steady and time-dependent regimes 
of melting in the presence of natural convection in an enclosed phase-change material 
heated from the side. The first part consists of developing two boundary layer solutions 
for the flows near the heated wall and the solid-liquid interface, and then matching these 
solutions with a unique solution for the core of the liquid region. The second part of the 
paper outlines an analysis for the earlier, time-dependent regime, when the liquid counterflow 
through the slender gap convects heat in the vertical direction. This two-part analysis shows 
that the liquid superheat (Stefan number, Ste) has a sizeable effect on the flow and temperature 
fields. As Ste increases, the average melting rate decreases and the overall heat transfer rate 
into the enclosure increases. 
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Background 

There are few "compact" problems in modern heat transfer 
that have attracted as much attention as the problem of melting 
in the presence of natural convection in an enclosure heated 
from the side. A segment of the literature devoted to this 

problem has been reviewed by Viskanta.t My own interest in 
it was sparked by the discrepancy between the large volume of 
this literature and the absence of a purely theoretical description 
of the phenomenon. A first analytical step for me in this field 
was the scale analysis, that is, the work of identifying the proper 
scales of the phenomenon, in order to construct scaling-correct 
correlations for the heat transfer and melting rates. 2 The 
objective of the present paper is to demonstrate that it is possible 
to go significantly beyond scale analysis and to produce an 
entirely theoretical description of the heat transfer and melting 
process. 

The most important feature of the analysis described in this 
paper is that it accounts for the lateral movement of the 
two-phase interface. Starting with Figure 1, the analysis focuses 
on the slender (boundary layer) flow near the interface, for 
which the frame x-y  is attached to the interface and migrates 
slowly to the left. The two-phase interface undergoes a defor- 
mation as it migrates to the left (i.e., the y axis becomes curved), 
because the melting rate increases with altitude (e.g., Figure 4). 
However, since the flow region is assumed to remain boundary- 
layer-like throughout the time interval for which the analysis 
is valid, it has been drawn straight and vertical in Figure 1. 

The flow region near the heated wall of the enclosure is 
assumed to be slender as well. This flow is studied in the frame 
x,-y,  which is stationary and attached to the right wall in Figure 
1. By taking into account the movement of the melting front 
away from the heated wall, it is possible to show how the liquid 
phase superheat (the Stefan number) affects the overall heat 
transfer and melting rates. 
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The analysis is based on a number of classical simplifying 
assumptions. The heated wall is maintained at constant tem- 
perature. The solid portion of the phase-change material is 
isothermal and at the melting point. The densities of the solid 
and liquid phases are equal, and the liquid is assumed to be 
Newtonian and Boussinesq incompressible. 

Cold boundary  layer 

The analysis of the convection dominated (quasi-steady) regime 
consists of developing two boundary layer solutions, one for 
the cold interface and the other for the heated wall, and then 
meshing these solutions to a unique solution for the core region. 
The method is the same as the one employed by Grip in the 
pure natural convection problem. The new feature contributed 
by the present analysis is the effect of melting along the 
solid-liquid interface, i.e., along the cold side of the cavity filled 
with liquid. 

In the system of coordinates x-y attached to the solid-liquid 
interface, the boundary layer equations for the conservation of 
momentum and energy are (see, for example, Ref. 4, pp. 112, 
114) 

dv ~v ~2v 
u ff~x+V ~y=V ~x2 +gf l (T-  T~) (1) 

c3T tgT 632T 
u - - + v - - = ~ - -  (2) 

ax ~y dx 2 

The symbols appearing in these and subsequent equations 
are defined in Figure 1 and the Notation. Worth noting is 
that x and y are assigned, respectively, to the horizontal and 
vertical directions, in accordance to the boundary layer natural 
convection treatment of Ref. 4. 

In the analysis that is presented below, the inertia terms 
appearing on the left side of the momentum equation (I) will 
be neglected. The neglect of these terms is justified not only at 
x = 0 but over the entire thickness of the thermal boundary 
layer (6 in Figure 1), provided the Prandtl number of the liquid 
is greater than 1. Inside the thermal boundary layer region, the 
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momentum balance is between the driving effect of buoyancy 
and the retardant effect of viscous shear. The analytical proof 
of these statements can be found in Kuiken, 5 Patterson and 
Imberger, 6 and on pp. 114-118 of Ref. 4. 

The first step in the analysis is to assume the shape of the 
temperature and velocity profiles across the cold boundary layer 
(thickness 6) and to solve the integral versions of Equations 1 
and 2. In Gill's original Oseen-linearized analysis the assumed 
profile shapes had exponential decays near the vertical surface. 
More recently, Blythe and Simpkins 7 have shown that con- 
siderably better agreement is achieved between the heat transfer 
result of this type of analysis and numerical experiments if the 

assumed profiles are described by polynomials. The value of 
their discovery is stressed further by the integral analysis of the 
classical vertical plate problem (Ref. 4, pp. 122-125), which 
showed that in the Pr>> 1 range the use of Squire's polynomial 
profiles 8 is clearly superior to the use of exponential profiles. 

For this reason, we assume Squire-type profiles for both the 
temperature and vertical velocity distributions in the thermal 
boundary layer 0 < x < 6, 

T=T~ 2 -  (3) 

6 \ 6,/' (4) 

in which T,(y) is the temperature distribution (thermal stratifi- 
cation) of the core region. The unknown function V(y) follows 
from the momentum equation (1), which for the thermal 
boundary layer region of a "Pr > 1" liquid reduces to 

g2v -gfl (T,- T) (5) 
~ X  2 

Next, we force the profiles 3 and 4 to satisfy the equation 
obtained by integrating Equation 5 from x =0 to x=  3. The 
result of this operation is 

V= -gfl To6 2 (6) 
3v 

Turning now our attention to the energy equation, we force 
the same profiles to satisfy the $6o ( ) dx integral of Equation 2, 
which reads 

u,sT~-uoTo +d dyf;VTdx=Ot~x~ (7) 

Note first that Ta= T~. The solid-liquid interface temperature 

Notation 

B Function, Equation 41 
c Specific heat of liquid 
C Constant, Equation 23 
C~ Constant, Equation 37 
g Gravitational acceleration 
G Function, Equation 55 
Gc Function, Equation 47 
G, Function, Equation 50 
hsf Latent heat of fusion 
H Height 
k Thermal conductivity of liquid 
Nu Overall Nusselt number for the solid-liquid interface, 

Equation 31 
Nu, Overall Nusselt number for the heated side, 

Equation 29 
Q Total heat transfer rate through the solid-liquid 

interface 
Qc Convection heat transfer rate, Equation 45 
Q, Total heat transfer rate through the heated wall 
Ra Rayleigh number, Equation 13 
Ste Stefan number, Equation 14 
t Time 
T Excess temperature above the melting point 
7" Dimensionless temperature, Equation 36 
AT Temperature difference between the right wall and 

the interface 

T c Core temperature 
u, v Velocity components, Figure 1 (see also ur, v,) 
Uo Melting velocity, Equations 10, 24 
rio Average melting velocity, Equation 25 

Dimensionless vertical velocity, Equation 38 
V Function, Equation 6 
x, y System of coordinates, Figure 1 (see also xr, y) 
x~ Horizontal coordinate, Figure 6 
X Liquid gap thickness, Figure 6 

Dimensionless vertical position, Equation 12 
Thermal diffusivity of liquid 

fl Coefficient of thermal expansion 
6 Thickness of cold boundary layer 
~" Dimensionless cold boundary layer thickness, 

Equation 12 
0 Dimensionless time, Equation 46 
2 Thickness of warm boundary layer 

Dimensionless warm boundary layer thickness 
Dimensionless horizontal position, Equation 36 

v Kinematic viscosity of liquid 
p Density of liquid, density of solid 
z Dimensionless core temperature, Equation 12 
~, ~, Functions of Stefan number, Equations 27, 30, and 

Figure 5 
( ) ,  Pertaining to the right side of the liquid region, 

Figure 1 
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is zero because T represents the excess temperature above the 
melting point of the phase-change material. The entrainment 
velocity function uf(y) is obtained from the mass conservation 
equation 

(8) 
ax ~y 

which, integrated from x = 0  to x=6 ,  yields 

d ffvdx (9) 
u~ = u 0 - d y  

And, since the x-y system of coordinates is attached to the 
slowly receding interface, the horizontal velocity through the 
interface (the "blowing" or "melting" velocity) is directly 
proportional to the heat flux on the interface: 

Uo = - -  (10) 
ph,/ ~-x ~=0 

Recall at this point that the solid is isothermal and at T=0 ,  
i.e., that there is no conduction into the solid. Al l  the heat that 
is transferred from the boundary layer to the interface is 
balanced by the latent heat of melting of the newly formed 
liquid. 

The end result of combining Equations 7-10 with the 
assumed profiles 3 and 4 is the energy-integral equation 

"C 2 Z d 1 d z (11) 2 Ste -g + ~ ~ (~P)-  ~ ~ (:3~) = - 2 

This dimensionless form is based on the new variables 

" Y ~ ' = ~  Ra TM , z =  T ,  ( 1 2 )  
Y = H '  n A--T 

in which Ra is the Rayleigh number based on the height of the 
interface and the overall (imposed) temperature difference: 

gflH s AT 
R a - - -  (13) 

~v 

The dimensionless group Ste is the Stefan number for the liquid 
phase: 

cAT  
S t e -  (14) 

In summary, the integral analysis of the cold boundary layer 
results in one equation, Equation 11, involving two unknown 
functions of altitude, z(~) and $(.~). In order to close the 
quasi-steady regime problem, we must consider the boundary 
layer flow along the heated wall. 

W a r m  b o u n d a r y  layer 

The temperature of the right wall of the enclosure is being 
maintained at  T = A T. The analysis of the warm boundary layer 
follows the same steps as the analysis of the cold boundary 
layer, therefore, we shall skip some of the details. With reference 
to the x,-y system of coordinates shown in Figure 1, the 
Squire-type profiles assumed for temperature and vertical 
velocity are: 

T,= ( A T -  Tc)(1 + ~ ) 2 +  T~ (15) 

gfl (AT_ Tc)22 x, ( ~ ) 2  v,= --~v ~- 1+ (16) 

where 2(y) is the thickness of the warm boundary layer. 
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Integrating the energy equation across the warm boundary 
layer we obtain 

(UrTr)_~--(u,.Tr)o+ v,T r dx,.=o~ -- (17) 
~Xr 0 

in which (T,)_z= T,. The entrainment velocity (u,)_ a is again 
related to the change in the vertical flowrate through the warm 
layer. This relation is provided by the integral of the mass 
conservation equation 

(u,)_ ~= ( U , ) o - ~  r, dx, (18) 

In both Equations 17 and 18 we substitute (u,)0=0 because 
the right wall is impermeable. 

In the end, that is after forcing the profiles (15,16) to satisfy 
Equation 17, we obtain the energy-integral equation for the 
right side 

1 d [_(1__T)2~3.]+ L d~" 1 - z  (19) 
9Od~ 36 (1-z)~[3 =2  ~[ 

The dimensionless ~ and z appearing in this equation have been 
defined already in Equation 12; the dimensionless boundary 
layer thickness ~ is defined in the same manner as 

~=--~ Ra 1/4 (20) 
H 

Summarizing the results of the two boundary layer analyses, 
we see two ordinary differential equations, Equations 11 and 
19, containing three unknown functions, z(~), ~(~) and ~(~). 
The problem will finally be cldosed through the act of matching 
the two boundary layer solutions, which is described next. 

Core region 

The matching of the two boundary layer solutions is effected 
by the requirement that the two boundary layers communicate 
with the same core region. This requirement is met already by 
the temperature field, as both boundary layer temperatures (T 
and T, of Equations 3 and 15) equal the same core temperature 
Tc at their respective outer edges. The velocity field, however, 
does not meet this requirement, because the cold-side entrain- 
ment velocity u~ of Equation 9 is not the same as the warm-side 
value (u,)_~, Equation 18. 

Let uc(y) represent the unique horizontal velocity distribution 
through the core. It is clear that since the right wall is stationary 
with respect to the core region, uc(y) is the same as the 
warm-side entrainment velocity (u,)_ a. On the cold side of the 
core region we note that the cold boundary layer and the 
solid-liquid interface to which it is attached migrate toward 
the left with the melting velocity Uo. Therefore, relative to the 
cold boundary layer solution of the second section, the true 
core velocity distribution uc is equal to the difference u f - u  o. 
The net result of this entire argument is that the cold-side and 
warm-side entrainment velocities are related by, 

u6-u o = (u,)_ ~. (21) 

which, after using Equations 9, 18, (U,)o = 0 and the dimension- 
less notation defined earlier, reads 

d r3 d ( z & ) = ~  [(1 -z)~[ s] (22) 

Equation 22 is the third equation that was needed in order 
to close the problem summarized at the end of the third section. 
Integrating Equation 22 once we obtain 

z ~  = (1 - z )~  3 + C (23) 
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in which the constant C must be zero so that the warm boundary 
layer "starts" (i.e., ~=0)  from the bottom end of the heated 
wall (~=0) where the adjacent core temperature is the lowest 
(z = 0). Alternatively, one can argue that C is zero because the 
cold boundary layer starts (~'= 0) from its top end (~ = 1) where 
the core temperature is the highest (~= 1). It is easy to show 
that the same conclusion (C =0) is reached by arguing, as done 
originally by Gill 3, that the top and bottom ends of the liquid 
cavity are impermeable. 

Beyond this point, the solution for z(~), ~'(~), and ~[(~) was 
pursued numerically. Equations 11, 19, and 23 (with C=0)  
were integrated by marching in steps of z instead of steps of ~. 
The shape of the z(~) function, Figure 2, shows that uniform 
steps in z bring about much finer steps in ~ near the ends of 
the two boundary layers (~=0) and (~= 1), that is, precisely 
in the regions that contribute the most to the overall heat 
transfer between the two sides of the liquid region. 

The numerical integration of each Ste case started from ~ = 0 
(i.e., from the bottom) where ~ = 0  and ~[=0. A guess had to 
be made for the value of one boundary layer thickness at the 
first ~ node, z = Az. The integration continued then all the way 
up to z = 1, where the value of the emerging final value of 
was compared with 1. In case of disagreement, the initial guess 
made for ~ (or ~') at the first z node was improved. Grid fineness 
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tests showed that a uniform division of the • domain into 2000 
steps was sufficient for guaranteeing better than 1% accuracy 
in all the calculated quantities, including the overall Nusselt 
number discussed in the next section. 

Figure 2 shows the temperature distribution in the core 
region. We see that at any given altitude the core temperature 
decreases as the Stefan number increases. Put another way, 
when the Stdan number is finite the average temperature of 
the core region (j'~ z d~) is less than 1/2. Worth keeping in mind 
is that the average core temperature equals 1/2 in the regime 
dominated by natural convection 3'7, and in the absence of 
melting. 

Figure 3 combines the solutions obtained for the cold-side 
and warm-side boundary layer thicknesses. Each boundary 
layer drops sharply to zero thickness at both ends of the liquid 
cavity. The new feature contributed by this work is the effect 
of the Stefan number, which is most pronounced on the 
thickness of the cold boundary layer. The cold boundary layer 
becomes thicker as the Stefan number increases. At the same 
time, the warm boundary layer becomes thinner, especially in 
its upper region. We shall see that this effect translates into 
lower melting rates and higher heating rates from the right 
wall, as Ste increases. 

The present solution also offers a glimpse of the shape of the 
nearly vertical solid-liquid interface, which was discussed in 
the first section. Since in the boundary layer convection regime 
the heating and melting phenomenon is quasi-steady, at each 
y value the solid-liquid interface migrates toward the left with 
the constant speed Uo of Equation 10. Therefore, at each point 
in time the shape of the interface has the same y dependence 
as the Uo function. Combining Equations 3 and 10, Uo can be 
rewritten as 

Uo=2 k AT Ral/4 z(~) (24) 
phsfH ~(~) 

showing that the shape of the interface is the same as that of 
the function ~ .  Figure 4 shows this shape and the manner in 
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which it is affected by changes in the Stefan number. The 
solid-liquid interface becomes relatively straighter over a larger 
portion of its height as Ste increases. 

Q u a s i - s t e a d y  h e a t  t r a n s f e r  a n d  m e l t i n g  ra tes  

The two overall quantities of interest in the quasi-steady or 
boundary layer convection regime are the overall (average) 
melting rate and the overall heat transfer rate passing through 
the heated wall. The average melting rate, rio, is obtained by 
combining Equation 24 with the definition 

Uo- H -  - - -  Uo dy (25) 

This operation yields 

k A T  
r0 = Ra 1/4 • (26) 

PhssH 

where the function • depends only on the Stefan number, 

fo O(Ste) = 2 ~ d~ (27) 

Figure 5 shows that O decreases significantly as Ste increases. 
In conclusion, relative to the melting rate that prevails in the 
limit of vanishing Stefan number [where O(0)=0.374], the 
average melting rate in the quasi-steady regime decreases as Ste 
increases. 

The overall heat transfer rate through the right wall is 

Q'=Jo \~-~,/o (28) 
or, in terms of the overall Nusselt number for the right side 

Nu,= Q" = Ral/40,(Ste) (29) 
k A T  

The function O,(Ste) is shorthand for the integral 

f ] l - z  O,(Ste) = 2 ~ -  d~ (30) 

which increases gradually as the Stefan number increases 

1 

I 

O r  

0.1 
10 15 

(1 + Ste) 

Figure 5 The ef fect  of Stefan number on the average melting rate 
(~) and the overall Nusselt number for heating from the side (~,) 
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(Figure 5). In the Ste=0 limit the value of this integral 
approaches O,(0)= 0.374, therefore the overall Nusselt number 
approaches Nu,=0.374Ra x/4. This zero-Ste estimate agrees 
well with the correlation Nu,~0.35 Ra 1/4, which was obtained 
in Ref. 2 based on numerical simulations of the quasi-steady 
regime at Rayleigh numbers (Ra) as high as 108. The fact that 
the theoretical Nu, is greater than the value provided by the 
numerical correlation is explained by the erosion of the upper 
portion of the two-phase interface in numerical and laboratory 
experiments. In the present analysis, the interface was treated 
as being nearly vertical all the way to the top of the enclosure, 
that is, all the way into the region that theoretically houses the 
highest heat flux and melting rate. In an actual experiment the 
high heat flux and melting rate of the upper region are 
moderated somewhat by the accentuated erosion and tilting of 
the interface. 

A final observation concerns the widening gap between the 
and ~, curves of Figure 5. To understand the physical 

meaning of this trend, consider the fact that the overall Nusselt 
number for heat transfer (Q) from the liquid to the interface is 
proportional to ~, 

Q =rio phsfH=Ral/4~ (31) 
NU=k AT k AT 

In light of Equation 31, the gap between the O and O, curves 
represents the difference between the heat transfer administered 
to the enclosure (Q,) and the heat transfer absorbed at the 
interface (Q). The difference between the two heat transfer rates 
is set aside for the task of steadily warming up the newly 
generated liquid, that is, for the sensible heating of the new 
liquid so that its temperature rises to the "average" temperature 
of the liquid region. 

V e r t i c a l  c o u n t e r f l o w  in t h e  c o n d u c t i o n  r e g i m e  

The preceding solution documents only the quasi-steady regime, 
that is, the long-time behavior of the heat transfer and melting 
processes, when the heat transfer resistance across the liquid 
space is dominated by the two vertical boundary layers. It is 
possible, however, to continue this line of inquiry by focusing 
on the earlier stages of the phenomenon. In what follows, we 
see that the sizeable Stefan number effect that is felt in the 
quasi-steady regime is only the last vestige of an effect that is 
felt throughout the time-dependent regimes that precede the 
quasi-steady regime. 

The earliest heat transfer regime is the one that is dominated 
by conduction. In this regime the thickness of the liquid gap is 
nearly constant. The temperature distribution across the gap 
is well known 9 

r = A r [ 1 - ± e r f  x, ] (32) 
l_ erfA 2(~t)1/2 ] 

where xl is measured in the direction shown in Figure 6. The 
parameter A is solely a function of the liquid-phase Stefan 
number, 

exp(-A2) z/2 A 
= rr - -  ( 3 3 )  

erfA Ste 

One noteworthy limit of this implicit relation is that of 
vanishingly small Stefan number, 

A--, (½ Ste) 1/2 as Ste--, 0 (34) 

The liquid gap extends from x I =0 to x 1 =X, while the gap 
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Figure 7 The effect of Stefan number on the temperature 
distribution across the slender liquid gap 

thickness X is a function of both time and Stefan number, 

X = 2A(at) 1/2 (35) 

The distribution of temperature across the liquid gap is 
illustrated in Figure 7, where 7" and ¢ are the dimensionless 
temperature and horizontal position, 

7"- T ~=x~ (36) 
AT X 

The temperature profile is linear (7"= 1 - ~ )  in the S t e ~ 0  limit. 
The temperature gradient at the solid-liquid interface decreases 
as Ste increases. The opposite behavior is exhibited by the 
temperature gradient near the heated wall. 

Less known than the temperature distribution is the fact that 
even when the liquid gap is extremely slender, the liquid is 
destined to circulate as a vertical counterflow. ~ o In other words, 
the liquid is never stationary. Natural convection is present as 
soon as a finite AT is maintained across the vertical liquid gap, 
regardless of the actual size of AT. This feature distinguishes 
the vertical liquid layer geometry from the horizontal layer 
heated from below (Bfnard convection), in which the transversal 

temperature difference must exceed a critical value before fluid 
motion can be observed. 

With reference to the system of coordinates xl-y of Figure 6, 
the momentum equation that governs the flow sufficiently 
far from the top and bottom ends of the liquid gap is the same 
as Equation 1, in which x is replaced by xl. This equation can 
be integrated once to read 

~2~ erf(¢A) 
- -  ~- C1 ( 3 7 )  

de 2 eft(A) 

in which the dimensionless velocity ~ is defined as follows, 

I) 
(38) g~ ATX2/v 

Integrating Equation 37 twice more and using the no-slip 
boundary conditions ~=0 at x = 0  and x = X ,  we obtain 

= ½C~ ¢(¢ - 1) + B(¢) - CB(1 ) (39) 

In this expression the function B(¢) is shorthand for the integral 

B(O= f;[ f~erf(nA) dn] eftA (40) 

The remaining constant, C1, is determined from the condition 
that at any instant in time the net vertical flow through the 
liquid gap is zero, 

~ ~ d ¢ = 0  (41) 

In the end, the vertical velocity profile of Equation 39 assumes 
the form 

~=[6f~B(¢)d¢-3B(1)]¢(¢-I)+B(O-¢B(1) (42) 

This velocity distribution depends not only on ¢ but also on 
A, because A appears in the integrand of the B integral, 
Equation 40. This feature is illustrated by Figure 8, which shows 
further that the plane of flow reversal (~ = 0) migrates away from 
the solid-liquid interface as the Stefan number increases. In the 
Ste ~ 0 limit, the ~ profile becomes centrosymmetric about the 
midplane ¢ = ½, 

= ~ ¢ ( 1  - ¢)(1 - 2¢) (43) 

0 . 0 1  

v 

0 Ste = 0 

- 0 . 0 1  I 1 I I I I I I I 

0 . 5  0 

Figure 8 The effect of Stefan number on the vertical velocity 
distribution across the slender liquid gap 
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In this limit the vertical velocity profile is the same as that of 
a fluid held in the gap between two tall vertical plates at different 
temperatures. 1 o 

T i m e - d e p e n d e n t  h e a t  t r a n s f e r  and  m e l t i n g  ra tes  

The new heat transfer-type feature of the slender-gap limit 
discussed above is that the counterflow of Figure 8 convects 
heat at a finite rate in the vertical direction. The convection 
heat transfer rate (Qc) originates from the lower extremity of 
the heated wall, and is absorbed by the top end of the 
solid-liquid interface (Figure 6). The presence of this convection 
contribution is another example of a general feature of all 
counterflow heat exchangers: any such heat exchanger convects 
heat in the longitudinal direction, when a net difference exists 
between the bulk temperatures of its two branches. 

The convection heat transfer rate can be calculated by 
performing the integral 

Qc = j~x pvc T dx (44) 

which, in dimensionless terms, reads 

Qc _Ra0a/2G c (45) 
k A T  

In this expression, 0 is the dimensionless time 

0 -  ~t 
- ~ i  Ste (46) 

and Gc is a function of only the Stefan number, 

;o Gc(Ste) = (2A Ste- 1/2)3 ~T d~ (47) 

In the Ste--, 0 limit, for example, the definite integral appearing 
in Equation 47 equals 1/720, and, via Equation 34, the function 
Gc equals 21/2/360. This and other representative values of the 
function Gc have been plotted in Figure 9. The numerical error 
in the calculated Gc values is less than 1%. 

The total heat transfer rate administered to the heated wall 
of the enclosure (Q,) can be calculated by adding the convection 

0.4 I I I I I I 

10 
(i + Ste) 

Figure 9 The functions G~, G,, and G that govern the overall heat 
transfer and average melting rates in the time-dependent regime 
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Figure 10 The effect of Stefan number on the history of the overall 
heat transfer rate 

contribution Qc to the thermal diffusion heat transfer collected 
over the xl =0  wall 

The additive form of the right side of Equation 48 is suggested 
by the geometry of Figure 6, that is, by the fact that the "wide" 
thermal diffusion current is perpendicular to Qc. When the liquid 
gap is extremely slender (X << H), the thickness X is independent 
of y over most of the height H. As a consequence, the thermal 
diffusion current is unaware of the presence of Q,, which 
proceeds vertically and erodes only the uppermost end of the 
solid-liquid interface. 

Applying one more time the Nu, definition given in the first 
part of Equation 29, the nondimensional version of Equation 
48 becomes 

Nu, = G,O- 1/2 + Ra 03/2Gc (49) 

where G, is also a function of only the Stefan number (Figure 9), 

Stel/2 
G, - - -  ( 5 0 )  

n 1/2 erfA 

The surface Nu,(Ra, 0, Ste) can be "condensed" in two dimen- 
sions by plotting the ratio Nu,/Ra TM versus (0 Ral/2), as done 
in Figure 10. Equation 49 becomes 

Nu, = G,(O Ral/2) - 1/2 + Gc(O Ral/2)a/2 (51) 
Ral/* 

This form and Figure 10 show that the right-side Nusselt 
number reaches a minimum when the abscissa group is of order 
one. The minimum migrates slowly toward higher values of 
(0Ra 1/2) as Ste increases. Each constant-Ste curve in Figure 
10 is terminated at the point where the Nu,/Ra 1/4 ratio reaches 
the plateau indicated by the quasi-steady heat transfer solution 
of Equation 29. 

The piecewise-continuous curve formed by joining Equation 
29 and Equation 51 moves toward higher (Nu,/Ra TM) and 
(0Ra 1/2) values as Ste increases. During this shift the curve 
retains its shape, namely, the nearly straight negative-slope 
portion that indicates the conduction dominated regime, the 
minimum associated with the competition between conduction 
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and convection, and, finally, the plateau of the quasi-steady 
regime. This sequence of bends in the curve can be anticipated 
also based on scale analysis. 2 The contribution of the present 
work is that it pinpoints the shape and location of the Nu, 
curve without relying on any empirical constants. 

The dashed-line in Figure 10 is the three-constant empirical 
(numerical) correlation developed in Ref. 2 based on scale 
analysis and numerical experiments at Rayleigh numbers as 
high as l0 s. The minimum of the theoretical curve occurs almost 
at the same time (0 Ra 1/2) as the minimum of the empirical 
correlation. The theory generally overestimates the numerical 
calculations, the largest difference being of the order of 19% 
in the region of the Nu, minimum. The discrepancy between 
theory and numerical experiments improves (decreases) to 7% 
in the long-time, quasi-steady regime. 

The average melting rate during the time-dependent regime 
can be estimated using the to value listed in Equation 31, 

k A T  
to = Nu (52) 

PhsfH 

in which Nu = Q/(k AT), and where (2 is the total heat transfer 
rate absorbed by the solid-liquid interface, 

Q= - \ ~ x l / x  ~ =x+Qc (53) 

Dividing this by k AT we obtain the overall Nusselt number 
for the cold side, 

Nu = GO- 1/2 + Ra 03/2G~ (54) 

where G is a new function of Ste, 

Ste 1/2 
G(Ste) = nl/2 erfA e x p ( - A 2 )  (55) 

In combination with Equation 52, the cold-side Nusselt number 
of Equation 54 delivers the desired melting rate. 

2~ 
Z 

0.1 I I I I I I I 

10 
( 0 R a l / 2 ) l / 2  

Figure 11 TheeffectofStefannumberonthehistoryoftheaverage 
melting rate 

The Nu(Ra, 0, Ste) surface (54) too can be cast in two 
dimensions by dividing by Ra 1/4 and plotting the resulting 
constant-Ste curves in Figure 11, 

Nu 
- -  = G(O Ral/2) - 1/2 + Gc(O Ral/2)3/2 (56) 
Ral/4 

Shown on the same graph are the plateau Nu/Ra 1/4 values 
found for the quasi-steady regime, that is, the value of @(Ste) 
of Equations 31 and 27. We see that as Ste increases above 1 
the time-dependent function (56) fails to intersect the horizontal 
line that accounts for the quasi-steady regime. This behavior 
suggests that the true (smooth) Nu curve loses its characteristic 
minimum above a certain Stefan number of order 1. This 
conclusion is markedly different than the one drawn from 
Figure 10, in which the characteristic shape of the Nu, curve 
appears to be preserved regardless of Stefan number. 

Conclusion 

The primary objective of this paper was to demonstrate that 
it is possible to anticipate theoretically the main features of 
the time-dependent and quasi-steady regimes of melting with 
natural convection in an enclosure heated from the side. The 
present work describes the manner in which the liquid superheat 
(Ste) influences the overall heat transfer and melting rates. 
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